A transistor is a semiconductor device with at least three terminals for connection to an electric circuit. The vacuum-tube triode, also called a (thermionic) valve, was the transistor's precursor, introduced in 1907. The principle of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925.
John Bardeen, Walter Brattain and William Shockley invented the first working transistors at Bell Labs, the point-contact transistor in 1947 and the bipolar junction transistor in 1948. The MOSFET (metal-oxide-semiconductor field-effect transistor), also known as the MOS transistor, was later invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959, which led to the mass-production of MOS transistors for a wide range of uses. The MOSFET has since become the most widely manufactured device in history.
The first patent for the field-effect transistor principle was filed in Canada by Austrian-Hungarian physicist Julius Edgar Lilienfeld on October 22, 1925, but Lilienfeld published no research articles about his devices, and his work was ignored by industry. In 1934 German physicist Dr. Oskar Heil patented another field-effect transistor. There is no direct evidence that these devices were built, but later work in the 1990s show that one of Lilienfeld's designs worked as described and gave substantial gain. Legal papers from the Bell Labs patent show that William Shockley and a co-worker at Bell Labs, Gerald Pearson, had built operational versions from Lilienfeld's patents, yet they never referenced this work in any of their later research papers or historical articles.
The Bell Labs work on the transistor emerged from war-time efforts to produce extremely pure germanium "crystal" mixer diodes, used in radar units as a frequency mixer element in microwave radar receivers. A parallel project on germanium diodes at Purdue University succeeded in producing the good-quality germanium semiconducting crystals that were used at Bell Labs. Early tube-based circuits did not switch fast enough for this role, leading the Bell team to use solid state diodes instead.
After the war, Shockley decided to attempt the building of a triode-like semiconductor device. He secured funding and lab space, and went to work on the problem with Bardeen and Brattain. John Bardeen eventually developed a new branch of quantum mechanics known as surface physics to account for the "odd" behavior they saw, and Bardeen and Walter Brattain eventually succeeded in building a working device.
The key to the development of the transistor was the further understanding of the process of the electron mobility in a semiconductor. It was realized that if there was some way to control the flow of the electrons from the emitter to the collector of this newly discovered diode (discovered 1874; patented 1906), one could build an amplifier. For instance, if one placed contacts on either side of a single type of crystal the current would not flow through it. However, if a third contact could then "inject" electrons or holes into the material, the current would flow. More details
John Bardeen, Walter Brattain and William Shockley invented the first working transistors at Bell Labs, the point-contact transistor in 1947 and the bipolar junction transistor in 1948. The MOSFET (metal-oxide-semiconductor field-effect transistor), also known as the MOS transistor, was later invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959, which led to the mass-production of MOS transistors for a wide range of uses. The MOSFET has since become the most widely manufactured device in history.
The first patent for the field-effect transistor principle was filed in Canada by Austrian-Hungarian physicist Julius Edgar Lilienfeld on October 22, 1925, but Lilienfeld published no research articles about his devices, and his work was ignored by industry. In 1934 German physicist Dr. Oskar Heil patented another field-effect transistor. There is no direct evidence that these devices were built, but later work in the 1990s show that one of Lilienfeld's designs worked as described and gave substantial gain. Legal papers from the Bell Labs patent show that William Shockley and a co-worker at Bell Labs, Gerald Pearson, had built operational versions from Lilienfeld's patents, yet they never referenced this work in any of their later research papers or historical articles.
The Bell Labs work on the transistor emerged from war-time efforts to produce extremely pure germanium "crystal" mixer diodes, used in radar units as a frequency mixer element in microwave radar receivers. A parallel project on germanium diodes at Purdue University succeeded in producing the good-quality germanium semiconducting crystals that were used at Bell Labs. Early tube-based circuits did not switch fast enough for this role, leading the Bell team to use solid state diodes instead.
The key to the development of the transistor was the further understanding of the process of the electron mobility in a semiconductor. It was realized that if there was some way to control the flow of the electrons from the emitter to the collector of this newly discovered diode (discovered 1874; patented 1906), one could build an amplifier. For instance, if one placed contacts on either side of a single type of crystal the current would not flow through it. However, if a third contact could then "inject" electrons or holes into the material, the current would flow. More details